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ABSTRACT

When a topological group G acts on a compact space X, its enveloping

semigroup E(X) is the closure of the set of g-translations, g ∈ G, in

the compact space XX . Assume that X is metrizable. It has recently

been shown by the first two authors that the following conditions are

equivalent: (1) X is hereditarily almost equicontinuous; (2) X is hered-

itarily nonsensitive; (3) for any compatible metric d on X the metric

dG(x, y) := sup{d(gx, gy) : g ∈ G} defines a separable topology on X; (4)

the dynamical system (G, X) admits a proper representation on an As-

plund Banach space. We prove that these conditions are also equivalent

to the following: the enveloping semigroup E(X) is metrizable.
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1. Introduction

A dynamical system, or a G-space, in this paper is a compact space X

(‘compact’ will mean ‘compact and Hausdorff’) on which a topological group

G acts continuously. We denote such a system by (G, X). For g ∈ G the

g-translation (or g-shift) is the self-homeomorphism x 7→ gx of X . If a

nonempty subset Y ⊂ X is G-invariant, i.e. if Y is closed under g-shifts, then

Y is a G-subspace. The enveloping semigroup (or Ellis semigroup) of

(G, X) is the closure of the set of g-shifts (g ∈ G) in the compact space XX ,

equipped with the product topology. Even for simple dynamical systems on

a compact metric space the enveloping semigroup may be nonmetrizable. For

example, for the classical Bernoulli shift (with G := Z) on the Cantor space

X = {0, 1}Z, the enveloping semigroup E(X) is homeomorphic to βN (see [18,

Exercise 1.25]). If X is the unit interval [0, 1] and G = H+[0, 1] is the group

of all orientation-preserving homeomorphisms, then E(X) is the nonmetrizable

space of non-decreasing and end-points-preserving self-maps of [0, 1]. If X is a

compact manifold without boundary of dimension > 1 and G = Homeo (X) is

the group of all self-homeomorphisms of X , then E(X) is XX .

On the other hand, if G is an equicontinuous group of homeomorphisms of

a compact metric space X , then E(X) consists of continuous self-maps of X

and hence is metrizable. More generally, the same is true if (G, X) is WAP

(= Weakly Almost Periodic). Recall that a function f ∈ C(X) is weakly

almost periodic if its G-orbit {gf : g ∈ G} lies in a weakly compact subset

of the Banach space C(X), and (G, X) is WAP if every f ∈ C(X) is WAP. A

dynamical system (G, X) is WAP if and only if E(X) consists of continuous

self-maps of X [12, 14].

A generalization of WAP systems, called Radon–Nikodým (RN for short)

systems, was studied in [28, 22]. To define this notion, note that with every

Banach space V one can associate a dynamical system SV = (H, Y ) as follows:

H = Iso (V ) is the group of all linear isometries of V onto itself, equipped

with pointwise convergence topology (or the compact-open topology, the two

topologies coincide on H), and Y is the unit ball of the dual space V ∗, equipped

with the weak∗-topology. The action of H on Y is defined by gφ(v) = φ(g−1(v)),

g ∈ H , φ ∈ Y , v ∈ V . The continuity of this action can be easily verified.

A representation of a dynamical system (G, X) on a Banach space V is a

homomorphism of (G, X) to SV = (H, Y ), that is, a pair of continuous maps
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(h, α), h : G → Iso (V ) and α : X → Y , such that h is a group homomorphism

and α(gx) = h(g)α(x) for all g ∈ G and x ∈ X . A representation is proper if

α is a topological embedding.

A compact metric G-space X is WAP if and only if (G, X) admits a proper

representation on a reflexive Banach space [28, Corollary 6.10], [22, Theorem

7.6(1)]. A dynamical system is Radon–Nikodým (RN) if it admits a proper

representation on an Asplund Banach space [28, Definition 3.10], [22, Definition

7.5.2]. (If G = {1}, we get the class of Radon–Nikodým compact spaces in the

sense of Namioka [32].) Recall that a Banach space V is Asplund if for every

separable subspace E ⊂ V the dual E∗ is separable. An equivalent condition is

that the dual Banach space V ∗ has the Radon-Nikodým property, whence the

name RN. Reflexive spaces and spaces of the form c0(Γ) are Asplund. About

the history and importance of Asplund spaces see for example [7, 8, 16].

Now assume that X is a metrizable compact space. One of the main re-

sults of [22] was a characterization of RN-systems as those which are “close to

equicontinuous”. To give a precise statement we recall a few definitions from

[23, 3, 28, 22].

Let d be a compatible metric on X . We say that (G, X) is nonsensitive if for

every ε > 0 there exists a nonempty open set O ⊂ X such that for every g ∈ G

the set gO has d-diameter < ε. (This property does not depend on the choice of

a compatible metric d.) A system (G, X) is hereditarily nonsensitive (HNS)

if all closed G-subsystems are nonsensitive.

A system (G, X) is equicontinuous at p ∈ X if for every ε > 0 there exists

a neighborhood O of p such that for every x ∈ O and every g ∈ G we have

d(gx, gp) < ε. A system is almost equicontinuous (AE) if it is equicontinuous

at a dense set of points, and hereditarily almost equicontinuous (HAE) if

every closed subsystem is AE.

Denote by Eqε the union of all open sets O ⊂ X such that for every g ∈ G

the set gO has diameter < ε. Then Eqε is open and G-invariant. Let Eq =
⋂

ε>0
Eqε. Note that a system (G, X) is nonsensitive if and only if Eqε 6= ∅ for

every ε > 0 and is equicontinuous at p ∈ X if and only if p ∈ Eq. Suppose that

Eqε is dense for every ε > 0. Then Eq is dense, in virtue of the Baire category

theorem. It follows that (G, X) is AE.

If (G, X) is nonsensitive and x ∈ X is a transitive point, that is, Gx is

dense, then for every ε > 0 the open invariant set Eqε meets Gx and hence

contains Gx. Thus x ∈ Eq. If, in addition, (G, X) is minimal (= all points are
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transitive), then Eq = X . Thus minimal nonsensitive systems are equicontinu-

ous (see [5], [23, Theorem 1.3], [2], or [22, Corollary 5.15]).

Theorem 1.1 ([22, Theorem 9.14]): For a compact metric G-space X the fol-

lowing conditions are equivalent:

(1) X is RN;

(2) X is HNS;

(3) X is HAE;

(4) every nonempty closed G-subspace Y of X has a point of equicontinuity;

(5) for any compatible metric d on X the metric dG(x, y) :=supg∈G d(gx, gy)

defines a separable topology on X .

It was proved in [22] that the equivalent conditions of Theorem 1.1 imply that

the enveloping semigroup E(X) must be of cardinality ≤ 2ω. In fact, it was

established in [22, Theorem 14.8] that E(X) is Rosenthal compact (see the first

paragraph of Section 6 for a definition), and the question was posed whether

this conclusion can be strengthened to “E(X) is metrizable”. This question was

repeated in [29, Question 7.7]. The aim of the present paper is to answer this

question in the affirmative. Moreover, it turns out that metrizablity of E(X),

in fact, is equivalent to the conditions of Theorem 1.1:

Theorem 1.2: Let X be a compact metric G-space. The following conditions

are equivalent:

(1) the dynamical system (G, X) is hereditarily almost equicontinuous

(HAE);

(2) the dynamical system (G, X) is RN, that is, admits a proper represen-

tation on an Asplund Banach space;

(3) the enveloping semigroup E(X) is metrizable.

Note that, as the enveloping semigroup depends only on the image of G in

Homeo (X), we can deduce that for metrizable flows the RN property likewise

depends only on the image of G in Homeo (X), and is therefore independent

of the topology of G. Of course we can obtain these observations also from

Theorem 1.1 since HNS (even for non-metrizable flows) has the same property.

After providing a few facts from general topology in Section 2, we prove

in Section 3 the implication (2) ⇒ (3) of Theorem 1.2, in other words, that

for every RN compact metric G-space X the enveloping semigroup E(X) is

metrizable. We prove the implication (3) ⇒ (1) in Section 4. Since (1) and
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(2) are known to be equivalent (Theorem 1.1), this proves Theorem 1.2. The

implication (1) ⇒ (3) is thus proved via representations on Banach spaces;

we give an alternative direct proof in Section 5. Some corollaries of the main

theorem are discussed in Section 6. The interested reader is referred to the

recent review article on enveloping semigroups in topological dynamics [20].

We thank the anonymous referee for a careful reading of the paper and for

many useful remarks.

2. General topology: prerequisites

A subset of a topological space is meagre if it can be covered by a countable

family of closed sets with empty interior. A space is Baire if every meagre set

has empty interior, or, equivalently, if the intersection of any countable family of

dense open sets is dense. Let us say that a (not necessarily continuous) function

f : X → Y is Baire 1 if the inverse image of every open set in Y is Fσ (= the

union of countably many closed sets) in X . According to this definition, Baire

1 functions need not be limits of continuous functions. However, if the target

space Y is metrizable (or, more generally, perfectly normal), then the limit of

every pointwise converging sequence of continuous functions is Baire 1:

Proposition 2.1 (R. Baire): If Y is a metric space and {fn : X → Y } is a

sequence of continuous functions converging pointwise to f : X → Y then f is

Baire 1.

Proof. Let U ⊂ Y be open. There is a sequence {Fn} of closed sets such that

U =
⋃

Fn =
⋃

IntFn, where Int denotes the interior. Then f−1(U) is the union

over n and k of the closed sets
⋂

i>n f−1

i (Fk).

Proposition 2.2 (R. Baire): Let f : X → Y be Baire 1. If X is Baire and

Y is separable and metrizable then there exists a dense Gδ-subset A of X such

that f is continuous at every x ∈ A.

Proof. Let {Un : n ∈ ω} be a countable base for Y . Write f−1(Un) =
⋃

k Fnk,

where each Fnk is closed, and consider the union D of the boundaries of all the

Fnk’s. Then D is meagre, and it is easy to see that f is continuous at every

point of the dense Gδ-set A = X \ D.
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Proposition 2.3: Let f : X → Y be a (not necessarily continuous) function

from a topological space X to a separable metric space Y . Suppose that the

inverse image of every closed ball in Y is closed in X . Then f is Baire 1.

Proof. Every open set U in Y is the union of a countable family of closed balls,

hence f−1(U) is Fσ.

We denote by C(X, Y ) the space of continuous maps from X to Y , equipped

with the compact-open topology. If X is compact and Y is metric, this topology

is generated by the sup-metric. If X is compact metrizable then the group

Homeo (X) ⊂ C(X, X) of all self-homeomorphisms of X is a separable and

metrizable topological group.

Proposition 2.4: Let X be Baire, L separable metrizable, K compact metriz-

able, Y dense in K. If f : X → C(K, L) is a (not necessarily continuous)

function such that for every y ∈ Y the function x 7→ f(x)(y) from X to L is

continuous, then there exists a dense Gδ-subset A of X such that f is continuous

at every x ∈ A.

The same result is true under the following assumptions: Y = K, K is

compact but not necessarily metrizable, X is regular and strongly countably

complete in the sense of Namioka [31]. For an easier proof of Namioka’s theorem

that works under less restrictive assumptions, see [33].

Proof. Equip C = C(K, L) with the sup-metric using a compatible metric d on

L. Then C is a separable metric space, and the inverse image under f of the

closed ball of radius r > 0 centered at h ∈ C is closed, being the intersection of

the closed sets {x ∈ X : d(f(x)(y), h(y)) ≤ r}, y ∈ Y . Thus Propositions 2.2

and 2.3 apply.

A function f : X → Y is barely continuous if for every closed nonempty

A ⊂ X the restriction f |A has a point of continuity. (This pun originates

in a 1976 paper of E. Michael and I. Namioka, [30].) It is a classical fact

(contained in R. Baire’s Thesis, 1899) that a function between Polish spaces is

barely continuous if and only if it is Baire 1 (see e.g., [26, Theorem 24.15]). If

f : X → Y is an onto barely continuous function between metric spaces and X

is separable, then so is Y [30] (see also [22, Lemma 6.5 and Proposition 6.7]).

We will need later a G-space version of this statement.
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If X and Y are G-spaces, let us say that f : X → Y is G-barely continuous

if the restriction f |A has a point of continuity for every G-invariant closed

nonempty subset A ⊂ X . A G-map between G-spaces is a map commuting

with the action of G.

Proposition 2.5: Let X and Y be metric spaces. Suppose that a (discrete)

group G acts on X by homeomorphisms and on Y by isometries. Let f : X → Y

be an onto G-map. If f is G-barely continuous and X is separable, then Y is

separable.

Proof. Pick ε > 0. Let α be the collection of all open subsets U of X such

that f(U) can be covered by countably many sets of diameter ≤ ε. Then α is

G-invariant and closed under countable unions. Since there exists a countable

subfamily β ⊂ α such that
⋃

β =
⋃

α, the family α has a largest element,

namely V =
⋃

α. Let A = X \V . If a ∈ A is a point of continuity of f |A, there

exists an open set O ⊂ X such that a ∈ O and f(O ∩ A) has diameter ≤ ε.

Then f(O ∪ V ) = f(O ∩ A) ∪ f(V ) can be covered by countably many sets of

diameter ≤ ε. Thus O∪V ∈ α, in contradiction with the fact that O meets the

complement of
⋃

α = V . We have proved that f |A has no points of continuity.

Since A is closed and G-invariant, and f is G-barely continuous, it follows that

A is empty.

Thus X = V ∈ α, and Y can be covered by countably many sets of diameter

≤ ε. Since ε was arbitrary, Y is separable.

Proposition 2.6: The Banach dual V ∗ of a nonseparable Banach space V is

nonseparable.

Proof. Construct a transfinite sequence {xα : α < ω1} of unit vectors in V such

that for each α < ω1 the vector xα does not belong to the closed linear space

Lα spanned by the vectors xβ , β < α. For every α < ω1 find a functional

fα ∈ V ∗ such that fa ∈ L⊥
α and fα(xα) = 1. All the pairwise distances between

distinct fα’s are ≥ 1. It follows that V ∗, considered with its norm topology, is

not separable.

Proposition 2.7: Let f : X → Y be a continuous onto map between compact

spaces. If X is metrizable, then so is Y .
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Proof. A compact space K is metrizable if and only if it has a countable base

if and only if the Banach space C(K) is separable. Note that C(Y ) is isometric

to a subspace of C(X) and hence is separable if C(X) is separable.

Alternatively, one can use Arhangelskii’s theorem on coincidence of the net-

work weight and weight in compact spaces [15, Theorem 3.1.19]. This approach

yields a stronger result: a compact space is metrizable if it is the image under a

continuous mapping of any space with a countable base, compact or not.

3. Proof of Theorem 1.2: Part 1

In this section we prove that for every RN compact metric G-space X the

enveloping semigroup E(X) is metrizable. Recall that X being RN means that

(G, X) has a proper representation on an Asplund Banach space.

For a Banach space V we denote by SV the dynamical system (Iso (V ), Y ),

where Y is the unit ball of the dual space V ∗, equipped with the weak∗ topology.

We first prove the special case of the implication (2) ⇒ (3) of Theorem 1.2,

when the dynamical system is of the form SV , where V is a Banach space with

a separable dual.

Proposition 3.1: Let V be a Banach space with a separable dual, G = Iso (V ),

Y the compact unit ball of V ∗ with the weak∗ topology, considered as a G-space.

Then the enveloping semigroup E(Y ) is metrizable.

Proof. Let K be the set of all linear operators of norm ≤ 1 on the Banach space

V ∗. Consider the topology on K inherited from the product (V ∗)V ∗

, where each

factor V ∗ is equipped with the weak∗ topology. Then K is compact, being a

closed subset of the product
∏

f∈V ∗ ‖f‖Y . We claim that K is metrizable.

Indeed, V is separable (Proposition 2.6), hence Y is metrizable, and so is each

ball rY , r > 0. If C is a norm-dense countable subset of V ∗, the restriction

A → A|C defines a homeomorphism of K onto a subspace of the product
∏

f∈C ‖f‖Y of countably many metrizable compacta. This proves our claim

that K is metrizable.

Restricting each operator A ∈ K to Y , we obtain a homeomorphism of K

with a compact subset L of Y Y . The enveloping semigroup E(Y ) is the closure

of the set {T ∗|Y : T ∈ G} in L. Since K is metrizable, so are L and E(Y ).
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Proposition 3.2: Let G be a separable topological group, X a compact metric

G-space. If X is RN then (G, X) has a proper representation on a Banach space

with a separable dual.

Proof. There exists a proper representation (h, α) : (G, X) → SV = (H, Y )

for some Asplund V . Since α(X) is metrizable, there exists a countable subset

A ⊂ V that separates points of α(X). Let W be the closed linear subspace of V

spanned by the union of G-orbits of all points of A. Then W is separable (note

that the G-orbit of any point v ∈ V is separable, being a continuous image of

G), G-invariant, and the restriction map V ∗ → W ∗ is one-to-one on α(X). It

follows that (G, X) admits a proper representation on W . Since V is Asplund

and W is separable, the dual of W is separable.

Proposition 3.3: Let X be a compact G-space. Suppose that G1 is a subgroup

of G and X1 is a closed G1-invariant subset of X . If E(G, X) is metrizable then

E(G1, X1) also is metrizable.

Proof. Consider the dynamical systems D = (G, X), D1 = (G1, X), and D2 =

(G1, X1). The enveloping semigroup E(D1) is a subspace of E(D), and there is

a natural onto map E(D1) → E(D2). If E(D) is metrizable, then so are E(D1)

and E(D2) (Proposition 2.7).

We now show that for every RN compact metric G-space X the enveloping

semigroup E(G, X) is metrizable. Since E(G, X) depends only on the image Ğ

of G in Homeo (X), we may assume that G is separable. One way to see this

is to choose a countable dense subset Ă ⊂ Ğ, choose a set of representatives

A = {a ∈ G : a 7→ ă, ă ∈ Ă}, and let G0 be the countable subgroup of G

generated by A. Then clearly (G0, X) is RN and E(G, X) = E(G0, X).

By Proposition 3.2 there exists a proper representation

(h, α) : (G, X) → SV = (H, Y )

for some Banach space V with a separable dual. In virtue of Proposition 3.1,

the enveloping semigroup of the system SV = (H, Y ) is metrizable. Consider

the dynamical system (h(G), α(X)). Its enveloping semigroup is metrizable

by Proposition 3.3. It remains to note that E(h(G), α(X)) and E(G, X) are

isomorphic.
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4. Proof of Theorem 1.2: Part 2

Let X be a compact metric G-space such that E(X) is metrizable. We prove

that X is HAE (= Hereditarily Almost Equicontinuous).

For every closed G-subsystem Y of X the enveloping semigroup E(Y ) is

metrizable, being a continuous image of E(X). Thus, it suffices to prove that

X is AE, that is, that the system (G, X) is equicontinuous at a dense set of

points.

Consider the metric space C = C(E, X) of all continuous maps from E =

E(X) to X , equipped with the sup-metric. For each x ∈ X let x∗ ∈ C be the

evaluation map defined by x∗(e) = e(x), e ∈ E. It is easy to see that the map

f : X → C defined by f(x) = x∗ is continuous at a point x ∈ X if and only if

(G, X) is equicontinuous at x. Thus we must prove that f has a dense set of

points of continuity. This follows from Proposition 2.4, where K = E, L = X

and Y ⊂ K is the set of all G-translations.

5. An alternative proof of the implication (1) ⇒ (3) in Theorem 1.2

The implication (1) ⇒ (3) in Theorem 1.2: if X is metric and HAE, then E(X)

is metrizable — was obtained in an indirect way, via representations on Banach

spaces. In this section we give a direct proof in the spirit of Section 4.

Consider the same evaluation map f : X → C(E, X) as in Section 4. The

assumption that X is HAE implies that for every nonempty closed G-invariant

subset Y of X the restriction f |Y has a point of continuity. In other words, f

is G-barely continuous in the sense of Section 2.

Consider the action of G on E given by ge(x) = e(g−1x) (g ∈ G, e ∈ E,

x ∈ X), and the action of G on C(E, X) given by gh(e) = h(g−1e) (g ∈ G,

h ∈ C(E, X), e ∈ E). (We consider here G as a group without topology; these

actions need not be continuous if G is considered with its original topology.)

Then G acts on C(E, X) by isometries. The evaluation map f : X → C(E, X)

is a G-map. Therefore, we can apply Proposition 2.5: f(X) is a separable subset

of C(E, X). Pick a dense countable subset A of f(X). Since f(X) separates

points of E, so does A. Therefore, the diagonal product △A : E → XA is an

embedding. Since X is metrizable and A is countable, XA is metrizable, and

so is E.
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6. Some applications and remarks

6.1. Tame dynamical systems. For a topological space X denote by B1(X)

the space of all Baire 1 real-valued functions on X , equipped with the pointwise

convergence topology. A compact space K is Rosenthal if it is homeomorphic

to a subspace of B1(X) for some Polish X .

In [22, Theorem 3.2] the following dynamical Bourgain-Fremlin-Talagrand

dichotomy was established.

Theorem 6.1 (A dynamical BFT dichotomy): Let (G, X) be a metric dynam-

ical system and let E(X) be its enveloping semigroup. We have the following

dichotomy. Either

(1) E(X) is separable Rosenthal compact, hence cardE(X) ≤ 2ω; or

(2) the compact space E contains a homeomorphic copy of βN, hence

cardE(X) = 22
ω

.

In [19] a dynamical system is called tame if the first alternative occurs,

i.e. E(X) is Rosenthal compact. It is shown in [19] that a minimal metrizable

tame system with a commutative acting group is PI. (For the definition of PI

and for more details on the structure theory of minimal dynamical systems see

e.g., [17].) The authors of three recent works [25], [27] and [21] improve this

result to show that under the same conditions the system is in fact an almost

1-1 extension of an equicontinuous system.

Under the stronger assumption that E(X) is metrizable Theorem 1.2 now

shows that the commutativity assumption can be dropped and that the system

is actually equicontinuous. We get the following definitive result in the spirit of

R. Ellis’ joint continuity theorem [11].

Theorem 6.2: A metric minimal system (G, X) is equicontinuous if and only

if its enveloping semigroup E(X) is metrizable.

Proof. It is well-known that the enveloping semigroup of a metric equicontin-

uous system is a metrizable compact topological group (see e.g., [18, Exercise

1.26]). Conversely, if E(X) is metrizable then, by Theorem 1.2, (G, X) is HAE

and being also minimal it is equicontinuous (see the paragraph before Theo-

rem 1.1).

Our characterization of metrizable HNS systems as those having metrizable

enveloping semigroups should be compared with the following
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Theorem 6.3: A compact metric dynamical system (G, X) is tame if and only

if every element of E(X) is a Baire 1 function from X to itself.

Proof. If Y is a separable metric space and B1(X, Y ) ⊂ Y X is the space of Baire

1 functions from X to Y , then every compact subset of B1(X, Y ) is Rosenthal.

Indeed, Y embeds in RN, hence B1(X, Y ) embeds in B1(X, RN) = B1(X × N).

In particular, if E(X) ⊂ B1(X, X), then E(X) is Rosenthal, which means

that (G, X) is tame. Conversely, if E(X) is Rosenthal, then by the Bourgain-

Fremlin-Talagrand theorem it is Fréchet [6]. (Recall that a topological space

K is Fréchet if for every A ⊂ K and every x ∈ A there exists a sequence of

elements of A which converges to x.) In particular, every p ∈ E(X) = G (we

may assume that G ⊂ Homeo (X)) is the limit of a sequence of elements of G

and therefore of Baire class 1 (Proposition 2.1).

Remarks 6.4: (1) Note that Theorem 1.2 resolves Problem 15.3 in [22]. In fact,

since the Glasner–Weiss examples [24] are metric and HNS (see [22, Section 11])

we now know that their enveloping semigroups are metrizable.

(2) Theorem 6.2 answers negatively Problem 3.3 in [19].

(3) In his paper [13] Ellis, following Furstenberg’s classical work, investigates

the projective action of GL(n, R) on the projective space P
n−1. It follows from

his results that the corresponding enveloping semigroup is not first countable.

In a later work [1], Akin studies the action of G = GL(n, R) on the sphere

Sn−1 and shows that here the enveloping semigroup is first countable (but not

metrizable). The dynamical systems D1 = (G, Pn−1) and D2 = (G, Sn−1) are

tame but not RN. Note that E(D1) is Fréchet, being a continuous image of a

first countable space, namely E(D2).

6.2. Distality and equicontinuity. A dynamical system (G, X) is distal

if for any two distinct points x, y ∈ X the closure of the set {(gx, gy) : g ∈ G} in

X2 is disjoint from the diagonal. If X is metrizable and d is a compatible metric

on X , this condition means that infg∈G d(gx, gy) > 0. Every equicontinuous

system is distal. By a theorem of Ellis a dynamical system (G, X) is distal if

and only if its enveloping semigroup E(X) is (algebraically) a group, see [10].

Note that this characterization implies that for any distal system (G, X) the

phase space X is the disjoint union of its minimal subsets. In particular it

follows that a point transitive distal system is minimal. (A dynamical system

(G, X) is point transitive if there is some x ∈ X for which the orbit Gx is
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dense in X .) As we have already observed, when X is equicontinuous, E(X) is

actually a compact topological group.

One version of Ellis’ famous joint continuity theorem says that a compact

dynamical system (G, X) such that E(X) is a group of continuous maps is

necessarily equicontinuous (see [11] and [4, page 60]). Using Ellis’s characteri-

zations of WAP and distality this can be reformulated as follows: A distal WAP

system is equicontinuous. We will now show that the WAP condition can not

be much relaxed.

Example 6.5: The following is an example of a dynamical system (Z, X) which

is distal, HAE, and its enveloping semigroup E(X) is a compact topological

group isomorphic to the 2-adic integers. However, (Z, X) is not WAP and a

fortiori not equicontinuous.

Let S = R/Z (reals mod 1) be the circle. Let X = S×(N∪{∞}), where N∪{∞}

is the one point compactification of the natural numbers. Let T : X → X be

defined by:

T (s, n) = (s + 2−n, n), T (s,∞) = (s,∞).

It is not hard to see that E(X) is isomorphic to the compact topological group

Z2 of 2-adic integers. The fact that X is not WAP can be verified directly by

observing that E(X) contains discontinuous maps. Indeed, the map fa ∈ E(X)

corresponding to the 2-adic integer

a = . . . 10101 = 1 + 4 + 16 + · · ·

can be described as follows: fa(s, n) = (s + an, n), where

a2k =
22k − 1

3 · 22k
→

1

3
, a2k+1 =

22k+2 − 1

3 · 22k+1
→

2

3
.

Geometrically this means that half of the circles are turned by approximately

2π/3, while the other half are turned by approximately the same angle in the

opposite direction. The map fa is discontinuous at the points of the limit circle.

For a point transitive HAE system distality is equivalent to equicontinuity

because, as we have seen, a distal point transitive system must be minimal and

a minimal HAE system is equicontinuous.

6.3. Semigroup compactifications of groups. A semigroup S is right

topological if it is equipped with such a topology that for every y ∈ S the

map x 7→ xy from S to itself is continuous. (Some authors use the term left
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topological for this.) If for every y ∈ S the self-maps x 7→ xy and x 7→ yx of

S both are continuous, S is a semitopological semigroup. A right topo-

logical semigroup compactification of a topological group G is a compact

right topological semigroup S together with a continuous semigroup morphism

G → S with a dense range such that the induced action G × S → S is con-

tinuous. A typical example is the enveloping semigroup E(X) of a dynamical

system (G, X) together with the natural map G → E(X).

Semitopological semigroup compactifications are defined analogously.

We have the following direct corollaries of Theorem 1.2.

Corollary 6.6: For a metric HAE system (G, X) its enveloping semigroup

E(X) is again a metrizable HAE system.

Proof. This follows from Theorem 1.2 because the enveloping semigroup of the

flow (G, E(G, X)) is isomorphic to E(G, X).

Corollary 6.7: The following three classes coincide:

(1) Metrizable enveloping semigroups of G-systems.

(2) Enveloping semigroups of HAE metrizable G-systems.

(3) Metrizable right topological semigroup compactifications of G.

Proof. A dynamical system has the structure of a right topological semigroup

compactification of G if and only if it is the enveloping semigroup of some

dynamical system (see e.g., [18, Section 1.4] or [22, Section 2]).

Remark 6.8: It is well-known that the enveloping semigroup of a WAP dy-

namical system is a semitopological semigroup compactification of G (see e.g.,

[18, Section 1.4] or [22, Section 2]). Thus a WAP version of Corollary 6.7

(omitting part (1)) can be obtained by changing ‘HAE’ to ‘WAP’ and ‘right

topological semigroup’ to ‘semitopological semigroup’. Moreover, as was shown

in [9] (see also [18, Theorem 1.48]), when the acting group G is commutative, a

point transitive WAP system is always isomorphic to its enveloping semigroup,

which in this case is a commutative semitopological semigroup. Thus, for such

G the class of all metric, point transitive, WAP systems coincides with that of

all metrizable, commutative, semitopological semigroup compactifications of G.

6.4. Semigroup actions. Our main result (Theorem 1.2) remains true for

semigroup actions up to a more flexible version of HAE. Namely, we say that
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a continuous action of a topological semigroup S on a metric space (X, d) is

HAE if for every (not necessarily S-invariant) closed nonempty subset Y there

exists a dense subset Y0 ⊂ Y such that every point y0 ∈ Y0 is a point of

continuity of the natural inclusion map (Y, d|Y ) → (X, dS), where dS(x, y) :=

sups∈S d(sx, sy). (It is not hard to see that for G-group actions on compact

metric spaces this definition is equivalent to our old definition which involved

only G-invariant closed subsets.) Then again HAE, RN and the metrizability

of E(X) are equivalent. We omit the details.

References

[1] E. Akin, Enveloping linear maps, in Topological dynamics and applications, Contempo-

rary Mathematics vol. 215, a volume in honor of R. Ellis, 1998, pp. 121–131.

[2] E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic , in Convergence

in Ergodic Theory and Probability, Walter de Gruyter & Co. 1996, pp. 25–40.

[3] E. Akin, J. Auslander and K. Berg, Almost equicontinuity and the enveloping semigroup,

in Topological dynamics and applications, Contemporary Mathematics vol. 215, a volume

in honor of R. Ellis, 1998, pp. 75–81.

[4] J. Auslander, Minimal Flows and their Extensions, Mathematics Studies 153, Notas de
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